Geometric approaches to computing Kostka numbers and Littlewood-Richardson coefficients
نویسندگان
چکیده
Using tools from combinatorics, convex geometry and symplectic geometry, we study the behavior of the Kostka numbers Kλβ and Littlewood-Richardson coefficients cλμ (the type A weight multiplicities and Clebsch-Gordan coefficients). We show that both are given by piecewise polynomial functions in the entries of the partitions and compositions parametrizing them, and that the domains of polynomiality form a complex of cones. Interesting factorization patterns are found in the polynomials giving the Kostka numbers. The case ofA3 is studied more carefully and involves computer proofs. We relate the description of the domains of polynomiality for the weight multiplicity function to that of the domains for the Duistermaat-Heckman measure from symplectic geometry (a continuous analogue of the weight multiplicity function). As an easy consequence of this work, one obtains simple proofs of the fact the Kostka numbers KNλ Nμ and Littlewood-Richardson numbers cNν Nλ Nμ are given by polynomial functions in the nonnegative integer variableN . Both these results were known previously but have non-elementary proofs involving fermionic formulas for Kostka-Foulkes polynomials and semi-invariants of quivers. Also investigated is a new q-analogue of the Kostant partition function, which is shown to be given by polynomial functions over the relative interiors of the cells of a complex of cones. It arises in the work of Guillemin, Sternberg and Weitsman on quantization with respect to the signature Dirac operator, where they give a formula for the multiplicities of weights in representations associated to twisted signatures of coadjoint orbits which is very similar to the Kostant multiplicity formula, but involves the q = 2 specialization of this q-analogue. We give an algebraic proof of this results, find an analogue of the Steinberg formula for these representations and, in type A, find a branching rule which we can iterate to obtain an analogue of Gelfand-Tsetlin theory. Thesis Supervisor: Sara Billey Title: Associate Professor of Mathematics, University of Washington
منابع مشابه
Ja n 20 05 The computation of Kostka numbers and Littlewood - Richardson coefficients is # P - complete
Kostka numbers and Littlewood-Richardson coefficients play an essential role in the representation theory of the symmetric groups and the special linear groups. There has been a significant amount of interest in their computation ([1], [10], [11], [2], [3]). The issue of their computational complexity has been a question of folklore, but was asked explicitly by E. Rassart [10]. We prove that th...
متن کاملOn the complexity of computing Kostka numbers and Littlewood-Richardson coefficients
Kostka numbers and Littlewood-Richardson coefficients appear in combinatorics and representation theory. Interest in their computation stems from the fact that they are present in quantum mechanical computations since Wigner [15]. In recent times, there have been a number of algorithms proposed to perform this task [1–3, 11, 12]. The issue of their computational complexity has received attentio...
متن کاملHall-littlewood Vertex Operators and Generalized Kostka Polynomials Mark Shimozono and Mike Zabrocki
Kostka-Folkes polynomials may be considered as coefficients of the formal power series representing the character of certain graded GL(n)-modules. These GL(n)-modules are defined by twisting the coordinate ring of the nullcone by a suitable line bundle [1] and the definition may be generalized by twisting the coordinate ring of any nilpotent conjugacy closure in gl(n) by a suitable vector bundl...
متن کاملA Generalization of the Kostka-foulkes Polynomials
Combinatorial objects called rigged configurations give rise to q-analogues of certain Littlewood-Richardson coefficients. The Kostka-Foulkes polynomials and twocolumn Macdonald-Kostka polynomials occur as special cases. Conjecturally these polynomials coincide with the Poincaré polynomials of isotypic components of certain graded GL(n)-modules supported in a nilpotent conjugacy class closure i...
متن کاملFinding polynomials to count lattice points; Computer explorations with MuPAD-Combinat
We are interested in Algebraic Combinatorics, a subject we give an overview, and in Symbolic Computation. In this paper we describe a problem we recently encountered in some experiments we are still carrying on. This problem is about generating polynomials counting lattice points in certain particular types of convex polytopes. The lattice points numbers are interpreted as Kostka numbers and Li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004